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Optimization Direct 

•  IBM Business Partner 

•  More than 30 years of experience in developing and selling 
Optimization software 

•  Experience in implementing optimization technology in all the 
verticals 

•  Sold to end users – Fortune 500 companies 

•  Train our customers to get the maximum out of the IBM software 

•  Help the customers get a kick start and get the maximum from the 
software right from the start 
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Which software? 

•  CPLEX Optimization Studio 

•  CPLEX is the leader in optimization 
technology 

•  CPLEX can handle large scale problems 
and solve them very fast 
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Why IBM? Why CPLEX? 

•  Fast 

•  Reliable 

•  IBM software 

•  Large scale 

•  Gives you the ability to model develop and solve your 
decision problem 

•  Complete solution 

6 



How can we help?   

•  Benchmark your problems?  

•  Help you with next steps for developing 
your solution! 

•  Develop optimization prototypes using 
OPL 
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CPLEX Performance 
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Energy Problems 

•  Network Planning  

•  Product Portfolio Planning 

•  Capital Investment 

•  Resource Planning 

•  Unit Commitment/Economic Dispatch 

•  Optimal Power flow / Security Constrained Dispatch 
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Unit Commitment Paradigm 

•  June 1989,  Electrical Power Energy, EPRI GS-6401: 
•  “Mixed Integer Programming is a powerful Modeling tool, 

They are , However, theoretical complicated and 
computationally cumbersome” 

•  California 7-day model:  

•  Reported results 1989 – machine unknown 
•  2 day model: 8 hours, no progress 
•  7 day model: 1 hour only to solve the LP 
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CPLEX MIP Performance and the Unit 
Commitment Paradigm 

•  California 7-day model 
•  1999 results on a desktop PC 
•  CPLEX 6.5: 22 minutes, Optimal 

•  2007 results on a desktop PC 
•  CPLEX 11.0: 71 seconds, optimal 

•  What has happened? 
•  CPLEX MIP has become the standard approach for UC 

applications 
•  CPLEX MIP early adopters  
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CPLEX MIP Performance and the Unit 
Commitment Paradigm 

•  What has happened? 
•  CPLEX MIP has become the standard approach for UC 

applications 
•  CPLEX MIP early adopters gained a competitive advantage 
•  Applications have expanded and changed 

•  1000-2000 generation  units simultaneously (Day Ahead 
Market) 

•  Solution Cycles less than 5 minutes (Real Time Market) 
•  Uncertainty – We start solving problems with 

•  Scenario Generation 
•  Stochastic 
•  Robust 
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Why we can succeed with CPLEX MIP? 

•  Computers are faster 

•  Good model formulations – “good modeling” 

•  Cutting Planes: Valid, redundant inequalities that 
tighten the linear relaxation  

•  Heuristics: inexpensive methods for converting a 
relaxation solution into an integer feasible solution 
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Computers are faster 

•  Parallel cores on commodity chips have become 
standard in recent years 

•  CPLEX has the best 
•  Parallel implementation for Barrier 
•  Parallel NonDeterministic MIP 
•  Parallel Deterministic MIP (Make the regulators Happy) 

•  Parallelism is enabled by default 
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CPLEX – Cuts – Valid Inequalities 

•  Reduce size of LP feasible region 

•  Cut out parts where there are no integer solutions 

•  (Usually) reduce number of integer infeasibilities 
•  Improves branching 
•  Improves performance of heuristics 

•  Mostly added during root solve, some added in tree 

•  Dramatic benefit in overall performance 
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CPLEX – Cuts – Valid Inequalities 

•  1335 models in IBM test set which take ≥ 10 secs and 
≤ 10,000 secs 
(Cplex 12.5, Xeon E5430 12 cores 2.66GHZ) 

•  Fail to solve 28% at all without cuts 

•  Those that do solve take 6 X longer 

Achterberg and Wonderling, 2013 
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CPLEX - Heuristics 

•  Attempt to find integer feasible solutions 

•  (Relatively) quick 

•  Work either by inspection or by solving a (possibly 
sequence of) small sub-models 

•  Can reduce solution times by reduced-cost fixing, root 
termination during cutting and pruning search tree 

•  On those 1335 test models 
•  11% fail to solve without heuristics 
•  Those that do take 2 X longer 
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CPLEX- Heuristics 

•  Useful in their own right if don’t require proof of 
optimality 

•  Essential for many large models where never get a 
solution from branching 

•  Cplex heuristics include 
•  local branching 
•  RINS 
•  feasibility pump 
•  (genetic) solution polishing 
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CPLEX – Model Structure 

•  CPLEX Optimization Studio 

•  Write models quickly 

•  Test 

•  Debug 

•  And start deploying 
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Unit Commitment and the future 

•  GOAL 1: FERC Meeting  (June 2014):  most of the new 
problems involve 
•  Stochastic 
•  Robust 
•  Scenario Based 
•  Monte Carlo Simulation and run many problems 

•  Goal 2:  Solve  many problems faster 
•  Take advantage of the architecture 
•  Do better and faster modeling 
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IBM – Toolbox for Uncertainty 
Optimization 

•  Joint Program between IBM Research and Decision 
Optimization 

•  If you want more info please contact Optimization 
Direct and we can organize a more detailed Webinar 
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Impact of uncertainty 

Population growth 

Long-term demand patterns 

Prices, demand, supplier reliability  

Rainfall, renewable energy sources, instrumentation error 
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Uncertainty Toolkit goals 
•  2013 Joint Program between IBM Research and Decision Optimization 

 
•  Goals 

•  Increase customer solution resilience, reliability, and stability  
•  Improve trust & understanding of optimization technology 

 
•  Our approach 

•  Leverage Decision Optimization & mathematical optimization to hedge against 
uncertainty (e.g. uncertain demand, task durations, prices, resource availability) 

•  A user-friendly toolkit as plug-in to Decision Optimization Center 

•  5 steps to resilient decisions in the face of uncertainty 

1. Define 
decision model 

2. Characterize 
uncertainty 

3. Generate 
uncertain model 

4. Generate 
decisions 

5. Analyze 
trade-offs 



Stable decisions, stable profits 



•  Test examples 
•  Supply chain planning for a motorcycle vendor  

2% increase in profits vs. deterministic optimization 
•  Inventory optimization for IBM Microelectronics Division  

Greater than 7x increase in feasibility vs. deterministic optimization 
 

•  Case studies 
•  Energy cost minimization for Cork County Council 

Estimated 30% value-add in cost reduction vs. deterministic optimization 
•  Leakage reduction for Dublin City Council 

Estimated 10 times increased stability vs. deterministic optimization 
 

•  Other benefits 
•  Automated toolkit reduces dependence on PhD-level experts & statistical data 
•  Visualize trade-off between multiple KPIs across multiple scenarios and plans 26 



re·sil·ient1 
adjective \ri-ˈzil-yənt\ 
a :  capable of withstanding shock without 
permanent deformation or rupture 
b :  tending to recover from or adjust easily to 
misfortune or change 

ve·rac·i·ty1  
noun \və-ˈra-sə-tē\  
: truth or accuracy 

un·cer·tain1 
adjective \ˌən-ˈsər-tən\  
: not exactly known or decided : not definite or fixed 
: not sure : having some doubt about something 

“Resilient” 
how decisions should 
be 

“Veracity” 
the data quality decision makers and 
decision software often assume 

“Uncertain” 
the actual data quality 

Effect of data uncertainty on decision resilience 

Assuming data veracity in the face of uncertainty leads to decision 
instability, as well as distrust in decision optimization technology. 
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Example use cases for the Uncertainty Toolkit 

28 

Industry	
   Typical company	
   Problem type	
  

Government	
   Government agencies	
   Project portfolio management	
  
Tourism	
   Hotel operators, Airlines	
   Revenue management	
  
Transport	
   Railroads	
   Railroad locomotive planning	
  
Transport	
   Supermarket chain, cement	
   Delivery / pick-up truck routing	
  
Utilities	
   Electricity company	
   Production planning	
  
Utilities	
   Water company	
   Tactical reservoir planning	
  
Utilities	
   Water company	
   Water distribution network configuration	
  
Utilities	
   Electricity company	
   Unit commitment	
  
Utilities	
   Water network operators	
   Pump scheduling	
  
Utilities	
   Water network operators	
   Pressure management	
  
Utilities	
   Electricity company	
   Energy trading	
  
Oil and gas	
   Oil company	
   Vessel scheduling	
  
Manufacturing	
   Manufacturer	
   Operational project scheduling	
  
Manufacturing	
   Car manufacturer	
   Manufacturing line load balancing	
  
Manufacturing	
   Aircraft manufacturer	
   Plant assembly	
  
Manufacturing	
   Car manufacturer	
   Sales and operations planning	
  
Supply chain	
   Manufacturer	
   Contractor to transport leg assignment	
  
Supply chain	
   Manufacturer	
   Product to store allocation	
  
Supply chain	
   Manufacturer, oil&gas	
   Inventory optimization	
  
Supply chain	
   Manufacturer, oil&gas	
   Supply chain network configuration	
  
Supply chain	
   Manufacturer	
   Procurement planning	
  
Supply chain	
   Manufacturer	
   Emergency operations planning	
  
Commercial	
   Banks, insurance, TV	
   Marketing campaign optimization	
  
Finance	
   Banks	
   Collateral allocation	
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5 steps to resilience with the Uncertainty 
Toolkit 

1. Define 
decision model 

2. Characterize 
uncertainty 

3. Generate 
uncertain model 

4. Generate 
decisions 

5. Analyze 
trade-offs 

•  Create optimization model with IBM CPLEX Studio 
•  Some modeling skill required, or existing assets 
•  Embed in IBM Decision Optimization Center 

•  OR consultant’s “wizard”:  7 screens 
•  Defines uncertainty, scenario generation, risk measures 

•  Built-in automated reformulation, based on steps 1 and 2 
•  No modeling knowledge required 
•  “Robustification” (make the original model robust to change) 

•  Business user’s “wizard” 
•  Automated solution generation 
•  Automated scenario comparison 

•  Built-in visual analytics 
•  Analyze KPI trade-offs across multiple plans & scenarios 

“Steve” the IT expert, &  
“Keith” the OR consultant 

“Anne” the business user 



Uncertainty Toolkit: automated 
reformulations 

Robust / Stochastic approach  
Applicabl
e model 

types 

Resulting 
model types 

Uncertainty 
characterizatio

n 
Restrictions 

Single-stage penalty approach 
(Mulvey et al., 1995) 

LP LP (or QP)  Scenarios 
(finite) 

No uncertain data in 
objective function MILP MILP (or 

MIQP) 
Two-stage penalty approach 
(Mulvey et al., 1995) 

LP LP (or QP) Scenarios 
(finite) 

No uncertain data in 
objective function MILP MILP (or 

MIQP) 
Multistage Stochastic 
(e.g. King & Wallace, 2012) 

LP LP Scenarios 
(finite) 

None 
MILP MILP 

Safety margin approach with 
ellipsoidal uncertainty sets 
(Ben-Tal & Nemirovski, 1999) 

LP QCP Range No uncertain data in 
standalone parameters or  
equality constraints 

MILP MIQCP 

Safety margin approach with 
polyhedral uncertainty sets 
(Bertsimas & Sim, 2004) 

LP LP Range No uncertain data in 
standalone parameters or 
equality constraints 

MILP MILP 

Extreme Scenario approach 
(Lee, 2014) 

LP LP Range No uncertain data in 
variable coefficients MILP MILP 

Distributionally robust 
reformulation  
(Mevissen et al., 2013) 

LP LP Scenarios Uncertainty in standalone 
parameters handled as 
penalty term in objective 

MILP MILP 
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Uncertainty Toolkit: automated 
reformulations 

Robust / Stochastic approach  
Applicab
le model 

types 

Resulting 
model types 

Uncertainty 
characterizati

on 
Restrictions 

Single-stage penalty approach 
(Mulvey et al., 1995) 

LP LP (or QP)  Scenarios 
(finite) 

No uncertain data in 
objective function MILP MILP (or 

MIQP) 
Two-stage penalty approach 
(Mulvey et al., 1995) 

LP LP (or QP) Scenarios 
(finite) 

No uncertain data in 
objective function MILP MILP (or 

MIQP) 
Multistage Stochastic 
(e.g. King & Wallace, 2012) 

LP LP Scenarios 
(finite) 

None 
MILP MILP 

Safety margin approach with 
ellipsoidal uncertainty sets 
(Ben-Tal & Nemirovski, 1999) 

LP QCP Range No uncertain data in 
standalone parameters or  
equality constraints 

MILP MIQCP 

Safety margin approach with 
polyhedral uncertainty sets 
(Bertsimas & Sim, 2004) 

LP LP Range No uncertain data in 
standalone parameters or 
equality constraints 

MILP MILP 

Extreme Scenario approach 
(Lee, 2014) 

LP LP Range No uncertain data in 
variable coefficients MILP MILP 

Distributionally robust 
reformulation  
(Mevissen et al., 2013) 

LP LP Scenarios Uncertainty in standalone 
parameters handled as 
penalty term in objective 

MILP MILP 

Q: How do I know which of these methods to use? 
 

A: The Uncertainty Toolkit will decide automatically based on your input 
into the Consultant’s Wizard 
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Questions 

•  What is the right model?  

•  Can we automate the selection of the model?  
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Uncertainty Toolkit Decision Tree 
(automated) Select the uncertain data item(s) 

Is the uncertainty represented as  
(1) a set of scenarios, or  
(2) a data range? 

Can some decisions change when you 
know the outcome of the uncertain data? 

Select a risk measure to optimize: 
(1)  Expected value 
(2)  Worst-case performance 
(3)  Conditional Value at Risk 

(2) (1) 

Yes 

No 

Single-stage scenario-
based 
•  Single-stage penalty 

approach 
•  Distributionally 

robust optimization 

Can some constraints 
be violated? 

No 

Multi-stage scenario-based approaches 
•  Stochastic Constraint Programming 
•  Stochastic Mathematical Programming 

Yes 

For these constraints, do you want to use: 
(1) Chance constraints (i.e. chance of violation < 5%) 
(2) A violation penalr\ty? 

(1) 

(2) 

Two-stage penalty approach 

Is the uncertain data item 
a variable coefficient? Yes 

Do you have correlated 
uncertain data items? 

Yes 

Safety margin with 
ellipsoidal uncertainty 

Do you want to work with 
a budget of uncertainty? 

Yes 

Safety margin with 
polyhedral uncertainty 

No 

Extreme scenario 
approach 
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Uncertainty Toolkit Decision Tree 
(automated) Select the uncertain data item(s) 

Is the uncertainty represented as  
(1) a set of scenarios, or  
(2) a data range? 

Can some decisions change when you 
know the outcome of the uncertain data? 

Select a risk measure to optimize: 
(1)  Expected value 
(2)  Worst-case performance 
(3)  Conditional Value at Risk 

(2) (1) 

Yes 

No 

Single-stage scenario-
based 
•  Single-stage penalty 

approach 
•  Distributionally 

robust optimization 

Can some constraints 
be violated? 

No 

Multi-stage scenario-based approaches 
•  Stochastic Constraint Programming 
•  Stochastic Mathematical Programming 

Yes 

For these constraints, do you want to use: 
(1) Chance constraints (i.e. chance of violation < 5%) 
(2) A violation penalr\ty? 

(1) 

(2) 

Two-stage penalty approach 

Is the uncertain data item 
a variable coefficient? Yes 

Do you have correlated 
uncertain data items? 

Yes 

Safety margin with 
ellipsoidal uncertainty 

Do you want to work with 
a budget of uncertainty? 

Yes 

Safety margin with 
polyhedral uncertainty 

No 

Extreme scenario 
approach 

34 



Question: 

•  What is the architecture?  
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Uncertainty Toolkit architecture 
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Question 

•  Can I automate the reformulation from the 
deterministic model?  
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Example: Automated model reformulation for 
stochastic CP 

Input: Deterministic model 

Output: Stochastic model 

Automated model reformulation 

IBM Confidential 
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Question 

•  What is the right Software Platform?  

39 



Decision Optimization Center (DOC) is about 
Decision Support 
 

•  DOC for OR (Operations Research) experts: Eclipse-based 
development environment to create optimization solutions 

•  CPLEX Studio embedded for OR needs 
•  Data modeling & connections 
•  Visualization 
•  Custom Java extensions 

•  DOC for business users: Supports decision making leveraging 
optimization  

•  Scenario-based analysis 
•  Manual planning in addition to optimization 
•  Alternative business goals 
•  Business rules 
•  Tradeoff visualization 
•  “Freeze” partial solution and solve again 
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Decision Optimization Center IDE 
OPL Model Development 
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Decision Optimization Center IDE 
Configuration of built-in visualization 
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Decision Optimization Center IDE 
Custom Java extensions 
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44 

Displays using Simple Tables and Charts – out of the box 
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Pivot Tables and Scenario Comparison – out 
of the box  

 
 



Case study:  Water treatment/distribution energy cost reduction 

•  Big picture: Cork County Council must reduce energy 
consumption by 20% by 2020 

•  95% of this utility’s water-related energy costs due to pump 
operations 

•  New dynamic energy pricing schemes leverage renewables (wind 
energy) 

•  Trade-off:  Cleaner energy at lower prices, but uncertainty in price 
due to 
•  Wind uncertainty 
•  Network outages 
•  Other weather conditions 

•  Goal: Schedule pumps leveraging dynamic prices, while hedging 
against uncertainty in price prediction 46 



Water 
source


Pumphouse
Treatment 
plant


Pumphouse


Simplified network (illustration purposes)

Goal: Optimize pump schedules to minimize (uncertain) energy costs while 

meeting demand and respecting plant and network constraints*


* Based on Cork County Council’s Inniscarra network 
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Uncertainty in price prediction 
•  Forecasted (D-1) post ante price from supplier 

•  Considers forecasted demand based on weather, special events, wind, etc. 

•  Actual (D+4) price charged 4 days after the event 
•  Forecasted (D-1) and Settled price (D+4) can differ due to changes in 

predicted wind energy availability, weather, and unpredicted grid events 
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SMP Energy Pricing Event
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Question: 
Should utility switch 
to a dynamic pricing 
scheme? 
Step 1: Prove dynamic 
pricing benefits 
Step 2: Prove 
optimization benefits 
Step 3: Deal with 
uncertainty 
 



Step 1: Define decision model 
•  Define objective, decisions, constraints (mathematical modeling skill required) 

•  Objective: minimize energy costs from pump operations 
•  Decisions: when to switch pumps on/off (decided every 30 minutes for 24 hours in advance) 
•  Constraints: satisfy tank levels, pump operation rules, customer demand, network constraints 

•  Model using CPLEX Studio, assuming certain data (“deterministic” model) 

Note: When data is fairly certain, deterministic models are sufficient to provide significant benefit 
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Example: Steps 1 & 2 – benefit of dynamic 
pricing combined with optimization 

Decision model in Decision Optimization Center prototype:  
Predicted energy cost savings from pump optimization and (known) dynamic energy 

prices 

Energy cost 

Existing schedule; day/night prices 

6% 5.5% 7.5% 

Optimizing 
day/night 
prices 

Switching 
to 
dynamic 
prices 

Optimizing 
dynamic 
prices 

Optimized schedule; day/night prices 

Existing schedule; dynamic prices 

Optimized schedule; dynamic prices 

•  Savings from dynamic pricing: 5.5% 
•  Savings from optimization: 13.5% 
•  Total 19% cost reduction 

Next…deal with price uncertainty 
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•  Price scenarios, with likelihoods: 
•  From energy provider 
•  From IBM Research forecasts 

 

P
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e 
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Time of day (30 min increments) 

Step 2: Characterize uncertainty 
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Step 2: Uncertainty Toolkit wizard for consultant input (1 of 
2) 

1. Select uncertain  
data 

2. Select data 
scenarios vs. ranges 

4. Select risk measures 3. Define decision 
stages 
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Step 2: Uncertainty Toolkit wizard for consultant input (2 of 
2) 

6. Define KPIs 

5. Specify constraint 
satisfaction  

7. Define correlation 
(optional) 

8. Save your recipe for later use 
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Step 3: Generate uncertain model 

•  Uncertainty Toolkit automatically generates the uncertain model(s) depending 
on choices in Steps 1 and 2 

•  Uncertain models are typically classified as 
•  “Robust”: hedging against worst case outcome(s) 
•  “Stochastic”: optimizing for expected outcome(s) 
•  If choice unclear, use both & visualize trade-offs 

Step 4: Generate plans 

§  Uncertainty Toolkit generates multiple solutions (deterministic, robust, 
stochastic) 

§  Uncertainty Toolkit automatically does solution-scenario cross-comparison 
–  What is the impact of change on each plan 

Robust optimization 
 

Stochastic optimization                        
 

Scenario/solution cross-comparison 
 

Business user’s 
wizard 
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Industry Solutions Joint Program 

Automated plan 
generation for 
varying scenarios 

Plan comparison 
across scenarios 

Scenarios 

E
ne

rg
y 

co
st

 (
eu

ro
/d

) 

Scenario drill-down 
analysis (e.g. best 
and worst case) 

Best average 
performance 
(stochastic model) 

Trade-off  analysis across scenarios 

Best worst-case 
performance 
(robust model) 

Pump scheduling use case:  
Value-add from Uncertainty Toolkit  

~ 30% improvement in energy cost reduction 

Step 5: Analyze trade-offs 

Reduced risk due to 
stochastic / robust 
solutions 
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Benefits of Uncertainty Toolkit – pressure management use case 

Water network 
demand 
scenarios Greater area covered = better 

Blue (robust) plan wins! 

Stability of leakage reduction 

Stability of hydraulic feasibility 

Worst-case infeasibility 

Worst-case leakage reduction 

Average infeasibility 

Average leakage reduction 

Robust plan = best performance 
in worst case 

Robust plan = best 
performance in average case 

   RobustPlanA 
   RobustPlanJ 
   DeterministicPlan_2 

UT = Uncertainty Toolkit plug-in to ODM Studio 

Pressure management use case:  
Water network operational decisions 10 times more stable than current state, 

continue to perform well when data changes (i.e. “robust” plans) 

Robust plans = most stable 
(~ 10 times more stable than 
deterministic (current state)) 
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Benefits of Uncertainty Toolkit – pressure management use case 

Visualization of  trade-off: robustness vs. cost 

Better << Objective values >> Worse 
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Low cost and robust 
Robust, but high cost 

Low cost, but fragile 
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Benefits of Uncertainty Toolkit – pressure management use case 

Number of feasible scenarios for each plan 

O
bj
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 (
co
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) 

 

Robust plan(s) feasible for most 
scenarios, at minimal cost increase 

per additional scenario 

Effect on feasibility (robustness) by increasing cost 

Deterministic plan(s) 
quickly infeasible for 

alternative scenarios, high 
cost per additional 

scenario 



Example: Unit Commitment 

Uncertain  
demand 
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60 Industry Solutions Joint Program 

Unit Commitment Problem 
Given 
l  Power generation units with 

l  Costs (start-up, fuel, CO2) 
l  Operational properties (capacity, ramp) 

l  Demand over several periods 
find generation plan 
l  Which units to use (unit commitment) 
l  How much to produce (dispatch) 
such that 
l  Demand is satisfied 
l  Operational constraints are satisfied 
l  Total cost is minimized 
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61 Industry Solutions Joint Program 

Unit Commitment Problem – Stochastic Version 

Problem: How to deal with uncertain loads? 

Question: 
l  Is the dispatch plan still feasible under a 

slight perturbation of the load? 

Stochastic Programming Approach 
l  Separate decisions into stages to be able to 

“react” to uncertainty 
Decision Stages 
l  Stage 1: unit commitment 

l  “Here-and-now” decisions 
l  Stage 2: dispatch 

l  “Wait-and-see” decisions 
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Step 6a: Inspecting the results: Table 
View 

 

•  Stochastic Plan is feasible for all scenarios 

•  Deterministic plans are only feasible for “their” scenario 

62 



Step 6b: Solution-Scenario Cross-
Comparison 
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Step 6c: Cross-Comparison: Spinning 
Capacity 
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Summary  

•  Energy applications can benefit from Optimization 

•  Cplex Optimization Studio can speedup solving your 
problems and Deployment 

•  MIP is becoming standard for solving Energy 
Optimization Problems 
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